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We consider the nth-order spacing distribution, Pn(s), in the statistical theory of energy levels of complex 
systems. Each Pn is written as a sum of multiple integrals over correlation functions. This procedure is used 
to establish the identity of the spacing distributions for all members of a class of Hamiltonian unitary 
ensembles. A power-series expansion of Pn(s), valid for all n, is developed. 

I. INTRODUCTION 

A STATISTICAL theory has been developed1-6 

which has been applied to the problem, of level 
spacing in heavy nuclei in a region of the excitation 
spectrum where the level density is approximately con­
stant over, say, a hundred levels. A suitably chosen 
ensemble of N-dimensional Hamiltonian matrices is 
introduced, and one studies the distribution of the eigen­
values of ensemble members. 

We are interested in developing approximation pro­
cedures for the calculation of energy level spacing dis­
tributions for a class of Hamiltonian matrix ensembles. 
To date, nearest-neighbor spacing distributions, P°(s) 
have been calculated, in the limit of large Hamiltonian 
matrix dimension N, for orthogonal, unitary, and 
symplectic ensembles3"-7; the next-nearest-neighbor spac­
ing distribution Px(s) has been calculated only for the 
orthogonal ensemble.5,7 One can start the calculations 
by imposing restrictions on the matrix elements of 
members of the Hamiltonian ensemble. For matrix dis­
tribution functions f(xh • • • }xN) which depend only on 
the eigenvalues Xi to xN, one obtains for the joint dis­
tribution function for the eigenvalues1 

PN(%i,%2,' • -,%N)-- •- f(xhx2,- • -,xN)H\xi-xj\P, (1) 

where /3=1, 2, 4 for the orthogonal, unitary, and sym­
plectic ensembles, respectively.5 The product factor arises 
from the Jacobian of the transformation from matrix 
to eigenvalue space and represents the volume of the 
former space associated with a given set of eigenvalues; 
it is responsible for the "repulsion effect." 

Alternatively, one can immediately assume Eq. (1) 
as a form of the joint probability distribution of eigen­
values.8 A particular f(%i, • • • ,##) does not uniquely 

* Supported in part by the National Science Foundation. 
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determine the distribution of elements in the Hamil­
tonian matrix ensembles. 

Members of the class of Hamiltonian ensembles in 
which f(xh- • -,xn) is a product, H« [gfe)]2> n a v e been 
extensively studied.1-3,5 '6,8 For example, the choices 

[g(^)]2=exp(—x2) — oo <x< °o , 
= (l — xy(l+xy M, v> — 1; | s | < 1 , 
= a W * a>~-1; 0 < # < o o , 
= 1 x=eie, O < 0 < 2 T T , 

lead to the so-called Gaussian, Jacobi, Laguerre, and 
circular ensembles, respectively.9 The circular5 and 
Gaussian4"-6 ensembles have been shown to have identi­
cal nearest-neighbor spacing distributions for f$= 1, 2, 4. 
Although the unitary ensembles, 0 = 2 are of less physi­
cal interest than the orthogonal ensembles, they have 
been studied more extensively because the caluclations 
are easier. One hopes that certain results established for 
/3= 2 will lead to generalizations valid also for 0 = 1. 

In Sec. II , we discuss the ^th-order spacing distribu­
tion, Pn(s), which is the probability that between two 
levels separated by a distance s there are found exactly 
n levels. These distributions are, apart from their 
mathematical interest, of importance because of the 
availability of empirical data with which to investigate 
the range of validity of the theoretical models. I t is 
shown that, in the flat region of the level density, and in 
the limit N —>™, the wth-order spacing distribution for 
all unitary ensembles associated with the classical 
orthogonal polynomials is identical with that of the 
circular ensemble. 

In Sec. I l l , power series expansions of Pn(s) are 
developed, valid for all n<KN. Auxiliary mathematical 
results are derived in the Appendix. 

II. EQUIVALENCE OF A CLASS OF 
UNITARY ENSEMBLES 

The wth-order spacing distribution corresponding to 
the interval x to x-\~s is given by 

Nl 
Pn(x,x+s) = -

(N—n—2)\n 

XPN(X, X+S, xZy 

/ /»\N—n~2/ *x+s\n 

KIJ \L / 
',xN)drztN. (2) 

9 The nomenclature in this field leaves something to be desired. 
The Gaussian ensemble is named for the weight function Q(#)]2 ; 
"circular ensemble" describes the periodic property of the allowed 
range of variables; most of the remaining names (Jacobi, Laguerre, 
etc.) come from the orthogonal polynomials associated with the 
weight function and the allowed range. 
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Here Pjv(ffi,ff2, • • • ,%N) is the joint distribution function; 
drq,r is the partial volume element (dxqdxq+i• • • dxr); 
fe is an integral, with respect to any one of the xk, over 
the entire range external to the interval x to x-\-s. The 
symmetry of the joint distribution function with re­
spect to all permutations of the xk allows us, here and 
below, to write the multiple integrations as symbolic 
powers, without specifying the variable associated with 
each integral. The symbol f will be used to designate 
integration over the entire range. (This range may differ 
from one ensemble to another.) The definition implies 
that 

i-i.+r. (3) 

Wigner10 established relations between the various 
spacing distributions and integrals over the correlation 
functions. We introduce 

Qk(x, x+s) = -
N\ 

i(D(/) kl(N-k-2)l 

XPN{%, oc+s, xh • • •, xN)drdiN, (4) 

which differ from Wigner's functions,10 Ik, only in nor­
malization. Wigner developed the relationships 

Qk(x, x+s) = £ )Pn(*, oc+s). (5) 

That Eq. (5) follows from Eqs. (2) and (4) may be seen 
by observing that, where the integrand is symmetric, 
the binomial theorem may be applied to Eq. (3): 

N—n—2 / /*x+s\ n—k (/) <;rx/) a) (6) 

One shows that 
JV-2 

Pn(x,x+s) = £ (-)™+ 
m—n 

x+s) (7) 

is a solution of the set of equations (5) by substituting 
(7) into (5). 

The above results are applicable to any joint proba­
bility distribution which is symmetric in all the 
variables. In what follows, we restrict our attention 
to a particular class of unitary ensembles. 

The factor JJ.i<j(xi—x3)
2 in Eq. (1) is equal to the 

square of the Vandemonde determinant.3 Equation (1) 
may then be written as 

=ncgfe)]2 

i 

Xi 

1 

x2 

1 

XN 

XI" x2" XN1' 

(8) 

10 E. P. Wigner, in Statistical Properties of Spectra: Fluctuations, 
edited by C. E. Porter (Academic Press Inc., New York, to be 
published), article 34. 

Further calculations may be simplified if one follows 
a procedure developed by Mehta3 for the Gaussian 
orthogonal ensemble. One may replace each row of the 
determinant in Eq. (8) by a linear combination of rows, 
obtaining the same set of linearly independent poly­
nomials in every column. In particular, for a given g(x%) 
and an allowed range a^Xi^b, one generates in this 
manner a set of polynomials ^n{xi) orthogonal with 
weight [g fe ) ] 2 in this range.5,8 One may now absorb 
the weight function g(Xi) in every element of the ith. 
column (every i); the n, i element is then <pn(%i) 
^g(xi)\f/n(xi). The functions <pn(xi) are now orthogonal 
in a ̂  Xi ^ b with constant weight. A constant outside 
the determinant allows the restriction that the <pn are 
normalized in the range a to b. 

Equation (8) may now be replaced by 

PN(och- • ',xN) = CT)et[_(pn(xi)~]i; 

( t , n = l , 2, • " , # ) . (9) 

The functions Qj~2 may be related to the j-level cor­
relation function Rj: 

«y(*i,---,*y) = ^ C ( ^ - y ) i ] - 1 

N-j 

X ( / ) PN(%h"',%N)dTj+i,N. (10) 

Equation (4) may be written as 

Qi-\x,x+s) = [_{j-2)q- 7 
XRj(x, X+S, XZ, • • •, Xj)dTz,j. (11) 

The integrations in Eq. (10) have been carried out 
for the circular unitary ensemble by Dyson,5 and for 
the Gaussian unitary case by Mehta and Dyson.6 They 
obtain 

Rj(xh- - -,Xj) = T>et[_K(xhxm)^\; 

( / , f » = l , 2 , . . . , i ) , (12) 

where K(xi,xm) is the kernel function defined by 

N 

K(xhXm) = X) <Pp(Xl) <Pp(%m) . (13) 
p=l 

From Eqs. (7), (11), and (12), it is readily seen that 
two ensembles with the same kernel will have the same 
set of spacing distributions. 

Instead of starting either with a Hamiltonian en­
semble or with Eq. (1), we may define a class of en­
sembles by Eq. (9), with the N functions <pn(x) chosen 
from any set which is orthonormal in some interval. 
[This class includes as special cases the ensembles de­
fined by Eq. (8).] One can show that the derivation of 
Eqs. (12) and (13) from Eq. (9) holds for all ensembles 
of this class. 

In what follows, we restrict ourselves to large N and 
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to the fiat region of the level density curve. The kernel 
has been derived for the circular unitary ensemble by 
Dyson5 and for the Gaussian unitary ensemble by 
Wigner.10 Their results are of the form 

K(xhxnl) = T-1\j=mB(%i—xm)~]/(xi--xm). (14) 

Here B is a constant determined by the scale of the 
independent variables. Using the Christoffel-Darboux 
formula for the kernels and the appropriate asymptotic 
expansions of the resulting expressions,11 we have ob­
tained Eq. (14) for the ensembles generated by the 
Jacobi polynomials {jf/r(x) = Pr_1^'v)(x), any /x, v^\ and 
by the Laguerre polynomials \jl/r(x) = Lr-i

a(x), any a]. 
For the Jacobi ensembles, the result is valid if xi and 

x<fYi a r e restricted to a neighborhood of the origin. In 
this neighborhood, the density has zero slope to order 
NQ/N (where No is the number of levels in this region), 
and the error in the kernel is at most of this order, so 
that for a given accuracy iVo is proportional to N. 

The level density for the Laguerre ensembles has 
been derived by Bronk12 and independently by Kahn, 
Porter, and Tang.13 They found that the density has no 
point of zero slope in the finite region of x. For our pur­
poses, we can define a "flat" region as the neighborhood 
of any x=xo (provided that xo is much larger than the 
mean spacing between the first two levels) if we restrict 
ourselves to a range of x over which the change in 
density may be neglected. Equation (14) is valid in this 
neighborhood if Xi and Xfft, a r e measured from a new 
origin at xo. The constant B (and hence also the density 
at the new origin) is proportional to XQ~112. For a fixed 
accuracy of the results, the size of the "flat" region is 
proportional to xo, so that the number of levels increases 
as #o+1/2. 

One concludes that for a unitary ensemble generated 
by any classical polynomial there exists a sufficiently 
large "flat" region in which Eq. (14) is valid. Hence, for 
these cases, each spacing distribution with n<£JSf is the 
same as that of the circular unitary ensemble. 

III. POWER-SERIES EXPANSION 

The development of a power-series expansion of Pn 

may be simplified by the introduction of a set of 
functions 

/N\ / rx+s\3' / r\ N~3' 
c,(*'*+n,-)(j, 

XPN(%1, Xh ' ' , %N)dTi,N. (15) 

Dyson5 introduced the notion of differentiating cer­
tain probability distributions to obtain the spacing dis­
tributions. (This technique has been used by other 
authors to obtain relations among various probability 

11 G. Szego, Orthogonal Polynomials (American Mathematics 
Society Colloquium Publications, New York, 1959), Vol. 23, Eqs. 
(4.5.2), (8.21.10), (8.22.6), and (8.22.8). 

12 B. Bronk (to be published). 
13 P. B. Kahn, C. E. Porter, and Y. C. Tang (to be published). 

distribution functions.8,14) Following this method, the 
derivative of G3 with respect to s is obtained through the 
use of (d/dx){fa

hy=r(fa
hy-l{d/dx) fa\ which is valid 

for integrands that are symmetric in all variables and 
independent of x. One finds 

dG'(x, x+s) /Ny 

ds \j amir 
XPN(X+S, X2, • ", xN)dT2,N. (16) 

Taking another derivative would involve differentiation 
under the integral sign. To avoid this difficulty, we 
restrict our attention to regions of x and s in which G3 

(and hence also dG3/ds) is independent of x. We may 
then shift x by —s, differentiate, and shift back again. 
The result is 

(PGt(s)/ds*=Q+*(s). (17) 

A series expansion of Pm(s) may be obtained from ex­
pansions of the G3(s) through the use of Eqs. (7) and (17). 
Combining Eqs. (10), (12), and (15), we have 

G>Xs)=(jl)-i([ \ BetlK(xhxm)yrlti. (18) 

We assume the legitimacy of the series expansion 

X ( * I , * » ) = E P , « Hp,q)(xi)pMq- (19) 

In the Appendix, the corresponding power-series ex­
pansion and subsequent multiple integration of G3 are 
carried out. The result may be expressed as 

r—0 par t 

X D e t [ > ( ^ w ) ] . (20) 

Here the second summation is over partitions of the 
integer r into two sets of numbers, pi to pj and qi to qj. 
Each such partition of r uniquely determines two 
determinants: the I, m element of the first is the coef­
ficient b(pi,qm) in Eq. (19), while the corresponding 
element of the second is 

[0 pi+qm odd 
e(pi,qm)=\, , ( 1 N 1 , (2D 

I (pi+qm+1)1 pi+qm even. 
From Eq. (21), it follows that Det\j(pi,qm)'] will 

vanish if either two of the pi or two of the qm are equal. 
Then, for a given j , the leading term in Eq. (20) will, 
in general, be the one corresponding to the partition of 
r into two identical sets, 0,1, 2, • • •, j — 1. The minimum 
value of the exponent r+j is therefore j2. Hence, the 
leading term of the spacing distribution Pn is of degree 
(n+2)2—2, in agreement with the result of Kahn and 

14 P. B. Kahn, Symposium on Statistical Properties of Complex 
Atomic and Nuclear Spectra, Stony Brook, 1963 (unpublished). 
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Porter.15 The coefficient of this term is derived in the 
Appendix. 

It follows from Eq. (18) that &'(s) has parity (-)>. 
The choice B = TT in the kernel given by Eq. (14) is 

such that the average nearest-neighbor spacing is one. 
With this kernel, the coefficients in Eq. (19) are 

» y = ( - ) i w ^ y / ^ L (22) 

Equation (21) then becomes 

G'(*)=(2/ir)'T (rs/2)+l £ {Detle(p,q)iy 
r par t 

X { r i ( - ) K « - 9 i > M i ! } - i . (23) 

The series expansion of G2(s) is more easily obtained 
from the known result 

QQ(s) = R2(xfx+s) = ll- (suMrj)VAr2]. (24) 

Instead of computing Gz(s) from Eq. (23), one may find 
Q1 (s) by an alternate method: 

(2ir*)2*-1r(2#+1)2 2P In 
G1W = ̂ 1 E ( - ) A ; H — 4 £ - . (25) 

P (2^+l)!L 2 ^ - 1 y-iyj 
This expression is simpler than Eq. (23) for computa­
tion; however, the method used in the derivation is 
not tractable for higher Qk(s). 

We expanded the infinite product expression4,5-7 for 
P°(s) as a power series, to order s10, and compared the 
coefficients with those of P°=Q°—Q1. The validity of 
the latter expression to this order is guaranteed, since 
the leading term in Q2(s) is of order su. At the maximum 
of P° (s^0.9), Q1 contributes about 5% and Q2 less 
than 0.02%. From Eq. (A6) one finds that Q2 rapidly 
becomes important beyond s= 1.5. 

The power series converge slowly in the region where 
Pn(s) is significantly different from zero; the method is 
unsuitable for a study of the behavior at very large s. 
However, the method has the advantage of adaptability 
for machine computation for many n. 

APPENDIX 

A determinant will be expressed here as an anti-
symmetrization of the product of diagonal elements. 
Thus Eq. (19) leads to 

Det[2£(tfZ,*0] = I I £ b(ti,q%)(%%)**Ap™(x%)**. (Al) 
i Pi,Qi 

The implicit antisymmetrization on the left side of this 
equation involves permutations over the variables; 
on the right we use, instead, the operator Apu\ which 
antisymmetrizes with respect to the j exponents pi 

^ P . B. Kahn and C. E. Porter, Nucl. Phys. 48, 385 (1963). 

to pj. The latter operator can be commuted with the 
factor (%i)qi as well as with the multiple integration 
involved in the calculation of GK Substituting Eq. (Al) 
in Eq. (18) and carrying out the integrations, one finds 

2*' /S\Pi+Qi+l 

G>'(s) = -IL Z bip^Ap'H-) e(Pi,qi) 
jl * Pi,Qi \ 2 / 

2>' / A y + r 

= - E E (-) en*(*,?<)] 

XD4pW>II «(*,«<)], (A2) 
i 

where e(pi,qm) is given in Eq. (21) and r=Zt=i,'(^»+?*). 
We consider partitions of a given value of r into two 
sets of numbers pi to pj, qi to q3; without regard to 
order within each set. The sum over these indices in 
Eq. (A2) may be separated as follows: (1) For each 
partition of a given r, the sum over ordered values 
within the sets is expressed by the product of SQ(]'} and 
Sp(3'\ the symmetrization operators with respect to 
the members of the sets. (2) The sum is then taken over 
partitions of a given value of r. Finally, (3) the sum over 
r is taken, giving the sum over powers of s. Equation 
(A2) is now replaced by 

23' /s\r+J' 
G'(*)=TE(-) £*Vy) 

jl r \2/ part 

X {SP<»m b(Pi,qi)AP<» I I e{phqt)-]}. (A3) 
i i 

Using the known relationship {AP^)jx){Ap^)f2) = SpU) 

X {f\A p(jl f2) the expression in braces in Eq. (A3) 
becomes 

{Ap^JlbiPi^mAp^VLeiPi^)} 
i i 

= Det[J(piM)] T>etle(pi,qi)].(A4) 

Since the product of determinants is completely sym­
metric with respect to the indices qi to gy, the operation 
with SQU) in Eq. (A3) results in a factor of jl Com­
bining these steps, we obtain Eq. (20). 

From Eq. (21), one may show that T>et[_e{phqm)~] 
has the following properties: (1) If two of the pi (two 
of the qm) are equal, the determinant will vanish. (2) 
If, in any partition, the sets pi and qi have unequal 
numbers of even integers, the determinant will vanish. 
(3) In a partition in which the number of even integers 
is the same in both sets, the determinant may be factored 
into a product of two determinants, one containing 
elements with even indices, the other those with odd 
indices. 

These three points lead to considerable reduction in 
the labor involved in manual computation of the coef-
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ficients in Eq. (23). In addition, they are used to find a 
general expression for the coefficient of the leading 
term of G*(s). We calculate the determinant 
T)et[_e(piiqk)'] for the case in which each set consists of 
the numbers 0, 1, 2, •••, ( j — 1). If the rows and 
columns are arranged so that all the odd indices appear 
first, the determinant is in clearly factorable form, with 
zeros in all positions of the two off-diagonal (even-odd, 
odd-even) blocks. The dimensions of the factors will 
be equal or will differ by one, depending on whether 
j is even or odd. The piqk element of either factor is 
(pi+qk-\-l)~l. Either diagonal block is designated as 
D(m), where m is the largest value of pi or qk. Evalua­
tion of D(m) is straightforward and may be found 

I. INTRODUCTION 

THIS paper deals with the problem of assigning a 
well-defined meaning to 

E «"V (Li) 
histories 

if S is the action for the free gravitational field. The 
present approach may actually be extended to the more 
general case of gravity interacting with matter. For 
simplicity we shall deal with the gravitational field 
only. 

The prescription given by Feynman1 to compute (LI) 
is not completely straightforward, because the action 
for the gravitational field is degenerate. The presence of 
an invariance group generates various difficulties which 
are well known for the case of the electromagnetic field 
and its Abelian gauge group. The quantization of the 
electromagnetic field in the framework of the Feynman 
sum over histories is analyzed in some detail in Sec. I I 

* Permanent address: Institut fiir Theoretische Physik Uni-
versitat Bern, Switzerland. 

f Supported by Janggen-Pohn-Stiftung and Schweizerischer 
Nationalfonds. 

1 R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948). 

in the treatise by Muir and Metzler16: 

u r (2t+a)l - f 
D(2u+a) = IL\ 

X ( 4 H - 2 o r H ) ; a = 0 o r l . (A5) 

Whether j is odd or even, one may write Det[tf (£»•,£*) 1 
as D(j)D(j—l). Evaluating this product from Eq. 
(A5) and substituting the result in Eq. (23) yields, for 
the leading term of GJ'(s) 

i - ) ( - ) n . (A6) 
W \ 2 / L*-m(2*+l)!!(2*-l)!!J 

16 T. Muir and W. H. Metzler, A Treatise on the Theory of 
Determinants (Dover Publications, Inc., New York, 1960), p. 429. 

and constitutes the basis of the present approach to the 
quantization of the free gravitational field. In particu­
lar, we examine the subsidiary condition associated with 
the gauge group, which in the case of the electromagnetic 
transition amplitude states that this amplitude is in­
variant with respect to a gauge transformation of the 
potential at the initial and the final surface. Section I I I 
deals with the generalization of this discussion to the 
gravitational case in a purely formal and heuristic 
manner. A more precise framework for the evaluation of 
the gravitational amplitude is set up in Sec. IV and the 
derivation of the subsidiary conditions in this frame­
work is given in Sec. V where we also proceed to convert 
them into differential form. Finally, it is shown in Sec. 
VI that the results obtained are equivalent to the results 
of the Hamiltonian quantization procedure as proposed 
by Dirac.2 One could and should trace out in a similar 
way the connection between the sum over histories 
formulation and the canonical formalism given by 
Arnowitt, Deser, and Misner.2 However, to treat this 
connection would lengthen the present account unduly. 

2 P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958); 
Phys. Rev. 114, 924 (1959); R. Arnowitt, S. Deser, and C. W. 
Misner, Phys. Rev. 113, 745 (1959); 116, 1322 (1959): 117, 1595 
(1960); 118, 1100 (I960). 
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The transition amplitude for the gravitational field as given by the Feynman sum over histories expression 
is analyzed in analogy to the electromagnetic transition amplitude. The analysis is based on an explicit 
representation of the Feynman sum by means of a lattice. The measure is found by consistency requirements 
and differs from those proposed by other workers. Particular attention is paid to the subsidiary conditions 
associated with the gauge group. It is shown, that the present approach is equivalent to the quantization 
by means of canonical variables as proposed by Dirac. 


